QUATERNISED RENZAPRIDE AS A POTENT AND SELECTIVE 5-HT₄ RECEPTOR AGONIST.

G.S. Baxter, P. Boyland, L.M. Gaster and F.D. King*

SmithKline Beecham Pharmaceuticals, Coldharbour Road, The Pinnacles, Harlow, Essex CM19 5AD, UK

(Received in USA 19 October 1992)

Abstract: The n-butyl quaternary salt of the 5-HT₄ receptor agonist and 5-HT₃ receptor antagonist, renzapride, is reported to be a potent and selective 5-HT₄ receptor agonist.

Serotonin - 5-HT₄ receptors have been identified in mouse embryo coliculli neurones,¹ guinea pig hippocampus², the gastro-intestinal tract^{3,4} and in both piglet⁵ and human atrium.⁶ The present communication describes the results we have obtained by quaternising the potent 5-HT₄ receptor agonist, renzapride (BRL 24924).^{7,8} Renzapride is also a potent 5-HT₃ receptor antagonist,⁹ and for selectivity for the 5-HT₄ receptor, we required a relative reduction in this activity. It has been reported that methyl quaternary salts of 5-HT₃ receptor antagonists, such as ICS 205-930, retain or even increase 5-HT₃ receptor antagonist potency.¹⁰ However, for free bases, N-substituents larger than methyl dramatically reduce this activity.¹¹ We therefore quaternised renzapride by reaction with n-butyl bromide in EtOH at reflux to give SB 205149 to investigate its pharmacological properties.

SB 205149 was assessed for its agonist potency and efficacy at the 5-HT₄ receptor located in the rat oesophageal tunica muscularis mucosae³ and its 5-HT₃ receptor affinity by its ability to displace [³H] granisetron from rat cortex¹⁶ (see Table). The previously published results for metoclopramide, renzapride,³ BIMU 1 and BIMU 8^{12,13} are included for comparison.

SB 205149 was found to be a potent and highly effective 5-HT₄ receptor agonist with a potency approximately 6 fold greater than renzapride, equivalent to 5-HT and almost 100 fold more potent than metoclopramide. However, as expected, SB 205149 was found to be only a weak 5-HT₃ receptor antagonist with a pK_i of 6.9, similar to that of metoclopramide. In contrast both BIMU 1 and BIMU 8, although highly potent 5-HT₄ receptor agonists, are also highly potent 5-HT₃ receptor antagonists.

In conclusion, n-butyl quaternisation of renzapride both reduced 5-HT₃ receptor affinity and increased 5-HT₄ receptor agonist potency to give a potent and selective 5-HT₄ receptor agonist. In addition, being a quaternary derivative, the compound is very polar and, if radiolabelled, could provide a suitable ligand for radioligand binding studies.

Compound	5-HT ₄ agonism -Log EC ₅₀ (SEM)	Intrinsic activity (SEM)	5-HT ₃ binding pK _i
5-HT	8.01 (0.04)**	1	6.8±0.1*
metoclopramide	6.1 ³	0.8	6.8 ¹⁶
renzapride	7.2 ³	0.8	8.3 ¹⁴
BIMU 1	8.0 ¹²	0.7	8.4 ¹³
BIMU 8	7.9 ¹²	0.9	8.8 ¹³
SB 205149	8.02 (0.09)**	0.79 (0.03)	6.9±0.1*

^{*} rat cortex, [3H]-granisetron, 5-HT an agonist 16 **rat oesophagus 3 n = 4.

References

- Dumius, A.; Sebben, M.; Bockaert, J. Naunyn-Schmied. Arch. Pharmacol. 1989, 340, 403.
- 2. 3. Bockaert, J.; Sebben, M.; Dumius, A. Mol. Pharmacol. 1990, 37, 408.
- Baxter, G.S.; Craig, D.A.; Clarke, D.E. Naunyn-Schmied. Arch. Pharmacol. 1991, 343, 439. Sanger, G.J.; Wardle, K.A. Serotonin: From Cell Binding to Pharmacology and Therapeutics; Paoletti et al., Ed.; Kluwer Academic publishers: Dordrecht, 1990; pp. 251-255. 4.
- Kaumann, A.J.; Brown, A.M.; Raval, P. Br. J. Pharmacol. 1991, 102, 98P.
- Kauman, A.J. Naunyn-Schmied. Arch. Pharmacol. 1990, 342, 619. Craig, D.A.; Clarke, D.E. Br. J. Pharmacol. 1991, 102, 563.
- 7.
- King, F.D.; Hadley, M.S.; Joiner, K.T.; Martin, R.T.; Sanger, G.J.; Smith, D.M.; Smith, G.E.; Smith, P.; Turner, D.H.; Watts, E.A. J. Med Chem (in press).
 Dunbar, A.W.; McClelland, C.M.; Sanger, G.J. Br. J. Pharmacol. 1986, 88, 319P.
- 10.
- Richardson, B.P.; Engel, G.; Donatsch, P.; Stadler, P.A. Nature 1985, 316, 126. Turconi, M.; Nicola, M.; Quintera, M.G.; Maiocchi, L.; Micheletti, R.; Giraldo, E.; Donetti, A. J. Med. Chem. 1990, 33, 2101.
- 12. Baxter, G.S.; Clarke, D.E. Eur. J. Pharmacol. 1992, 212, 225.
- Turconi, M.; Schiantarelli, P.; Borsini, F.; Rizzi, C.A.; Ladinsky, H.; Donetti, A. Drugs of the Future 1991, 16, 1011. 13.
- Flynn, D.L.; Zabrowski, D.L.; Becker, D.P.; Nosal, R.; Villamil, C.I.; Gullikson, G.W.; Moummi, C.; Yang, D-C. J. Med. Chem. 1992, 35, 1486. Sanger, G.J. Br. J. Pharmacol. 1987, 91, 77.
- Nelson, D.R.; Thomas, D.R. Biochem. Pharmacol. 1989, 38, 1693.